Class 2: SW Quality Design, LID & Green Infrastructure

Heather Williams LEED-AP, EI

Mary Halley PE

December 18, 2020

Stormwater Design Handbook Webinar Training Series

Stormwater Quality Design Compliance

Today's Stormwater Regulation Program

Stormwater Quality BMP

A <u>structural</u> BMP that "treats" runoff to protect streams and properties from pollutants in runoff

Treatment methods:

- Volume removal; or
- Pollutant removal

Green Infrastructure BMP (GI-BMP)

> A stormwater <u>quality</u> BMP designed to treat runoff using **volume removal**

Bioretention BMP on Jackson Street in Topeka

Traditional BMP

A stormwater <u>quality</u> BMP designed to treat runoff using **pollutant removal**

Native vegetated dry detention BMP in Topeka

Low Impact Development (LID)

A <u>nonstructural</u> site planning technique that to promote runoff volume reduction using the land's natural hydrology

Stormwater Quality Applicability (Who's in?)

11

Driver: NPDES-MS4 Permit requirements

- Applies to new/redevelopments > 1 acre land disturbance
- Consider structural and non-structural strategies
- Ensure the long-term BMP maintenance and operation

Original EPA requirements (circa 2003)

Chapter 13.35 Section 010

Topeka Municipal Code

Who's In for Stormwater Quality?

- Subdivision plats & site plans that
 - Disturb 1 acre or more or
 - Disturb less than 1 acre but discharge to an impacted waterbody
- Does this include subdivisions with private roads? YES, if the subdivision project meets the above criteria.
- Excludes plats/plans approved before January 1, 2021
 - Must comply with current rules

Chapter 13.35 Section 020

Topeka Municipal Code

Exemptions

> When a plat or site is not required

- > 1 or 2-family residences on a lot
 - Located in a residential subdivision
 - Platted before August 29, 2011; or
 - Served by a BMP that already meets the stormwater quality rule
 - Must be designed to <u>safely</u> drain to a vegetated area or channel <u>before</u> discharging to the public system

Chapter 13.35 Section 020

Topeka Municipal Code

Can I get a waiver?

Maybe

- if BMPs will cause problems (not likely)
- if a downstream
 BMP can provide
 compliance before
 discharge to stream

BE AWARE!

Topeka is required by KDHE's municipal stormwater permit to regulate stormwater quality. The permit does not include exemptions or waivers!

A waiver of stormwater quality compliance for an applicable site is highly unlikely.

Chapter 13.35 Section 020

Topeka Municipal Code

Downstream BMP Waiver

- Runoff must:
 - Drain to downstream BMP before public system or waterbody
 - Not cause negative impacts between the project and the downstream BMP
- BMP must be fully functional or improved to fully function *prior* to site construction
 - Full function = meets current stormwater rules
- Applicant is responsible for coordinating with downstream BMP Owner
- Applicant must obtain an agreement from BMP Owner authorizing discharge and establishing maintenance responsibilities
 - Must be recorded with County Register of Deeds

Stormwater Quality Compliance

Chapter 13.35 Section 030

Topeka Municipal Code

How do I comply?

- Be designed for <u>natural</u> infiltration to the maximum extent possible using LID
- Provide stormwater quality treatment
- As specified in the BMP Design Handbook

TY OF TOPEKA

Stormwater Quality Compliance

Chapter 3 Section 3.3

Topeka Stormwater BMP Design Handbook

The Handbook says

- Project designs <u>shall</u> meet or exceed the Level of Service (LS) using the method and BMP design specs in the MARC Manual
- > Note one BMP spec is the Handbook (cisterns)

Complimentary Documents for BMP Design

Use the MARC Manual for:

- Guidance of the Level of Service Method
- Required equations & calculations
- Level of Service worksheets
- Design Mitigation Package worksheets
- BMP Design Specifications

Use the Handbook for:

- New Value Rating Table
 - Non-native Extended Dry Detention Basin
 - Non-native Vegetated Swale
- Cistern BMP design specification
- > New policies for:
 - Manufactured Treatment Devices
 - Landscape Credits
 - Infiltration feasibility & test reqmts
 - Underdrain use policies
 - Vegetated BMPs policies
- BMP Design Procedure Forms for all BMPs aligned w/ Topeka reqmts

Stormwater Quality Compliance

Chapter 3 Table 3.1

Topeka Stormwater BMP Design Handbook

Use the Handbook's Value Ratings!

Table 3-1. Stormwater Quality BMP Value Ratings (adapted from MARC/APWA BMP Manual, 2012)

	Median Expected Effluent EMC TSS (mg/L)*	Value Ratings				Overall
Cover Type or BMP		Water Quality Value	Volume Reduction	Temp. Reduction	Oils/ Floatables Reduction	Value Rating
Native Vegetation Preserved/Established	N/A	5.25	2	1	1	9.25
Rain Garden	< 10	4	2	1	2	9.0
Infiltration Basin	< 10	4	2	1	2	9.0
Infiltration Trench	< 10	4	2	1	2	9.0
Bioretention	< 10	4	1.5	1	2	8.5
Pervious Concrete	10 - 20	3	1.5	1	2	7.5
Porous Asphalt	10 - 20	3	1.5	1	2	7.5
Modular Concrete Block	10 - 20	3	1.5	1	2	7.5
Extended Detention Wetland	< 10	4	2	0	1	7.0
Surface Sand Filter	< 10	4	0	0	2	6.0
Underground Sand Filter	< 10	4	0	0	2	6.0
Pocket Sand Filter	< 10	4	0	0	2	6.0
Perimeter Sand Filter	< 10	4	0	0	2	6.0
Extended Wet Detention Basin	10 - 20	3	2	-1	1	5.0
Vegetated Filter Strip	10 - 20	3	1	0	1	5.0
Extended Dry Det. Basin (Native Veg.)	20 - 50	3	1	0	0	4.0
Extended Dry Det. Basin (Non-Native Veg.)	20 - 50	2	0	0	0	2.0
Native Vegetation Swale	10 - 20	3	1	0	0	4.0
Non-Native Grass Vegetation Swale	10 - 20	1.5	0	0	0	1.5
Other Systems (Manufactured Treatment Devices)	10 - 100	1-3	0	0	2	3.0 - 5.0
 Proprietary Media Filtration Devices Hydrodynamic Devices Baffle Boxes Catch Basin Inserts 	Approved on a case-by-case basis. See Section 3.6 for design requirements.					
Green Roofs	No VR; Post-construction CN credit; See MARC/APWA Manual					
Cisterns	No VR; Post-construction CN credit; See Appendix F					

* TSS (Total Suspended Solids); mg/L (milligrams per liter); EMC (Event Mean Concentration); See MARC/APWA BMP Manual for more information on the derivation of the Value Ratings and source of TSS EMC data for most BMPs.

Cistern BMP Design Specification

Appendix F

Topeka Stormwater BMP Design Handbook

Stormwater BMP Design Handbook

Appendix F

Cistern with overflow pipe to a green roof. Source: City of Atlanta GA

Incentives:

 Retaining stormwater on site reduces the scale of stormwater management needs.
 irrig

Storing water for emergency purposes, such as fire because the storage volume will not be emptied be

Benefits:

The capture and reuse of rainwater can significant benefits of cisterns and water reuse include:

- Providing a water source for non-potab
- Relatively easy to install and maintain,
- Reductions in stormwater runoff volum

Application:

Cisterns are not assigned a Value Rating as part o Service calculations is a decreased Curve Number assigned a CN of 79 (HSG "C", Turf, Fair). This CN i stormwater quality management only). This CN si

Location:

Cisterns and other stormwater reuse facilities can cistern is below.

- When determining the location of the
 - ✓ The ease in connecting roof drail
 - The location and direction of sto
 - The location of a level area for the locatin of a level area for the location of a level area fo

City o

Version: January 2021

City of Topeka, KS Design Specifications Cisterns

Description:

syste

stor

irrig man

emi

bety

size

For

man

stor

gard

Cisterns and other tanks with similar functions, such as rain barrels, stormwater reservoirs, and rainwater harvesting

Stormwater BMP Design Handbook City of Topeka KS

- Design Specification Cisterns continued
- The cistern's location relative to its intended water uses
- Location of hoses or other water distribution components
- ✓ Possible conflicts of the cistern location with buildings, roadways, or utilities
- ✓ The locations of necessary electrical connections, if applicable
- ✓ Emergency ingress/egress needs from the building, site, or cistern area
- ✓ Surrounding or nearby foliage and the need for a leaf screen option
- Aesthetic considerations
- Ensure adequate space is provided for appropriate foundation and structural support for the cistern
 or tank structure.
- Choose an adequate discharge location and overflow route to a vegetated landscaped area or additional Gi facility (e.g., green roof, bioretention, etc.). Remember that overflow is stormwater and must be considered as a part of the land development for purposes of meeting stormwater quantity management requirements.

Design:

Cisterns must be designed to meet a specific and consistently repeatable water reuse demand. Multiple devices can be used to increase available storage and simplify routing for reuse. Devices should be of the appropriate type and have sufficient capacity for the intended application as noted.

- ✓ Rain barrel (50 to 150 gallons)
- ✓ Cistern (500 to 7,000 gallons)
- Large aboveground tank (3,000 to 12,000 gallons)

In order to include the retained volume in stormwater design calculations, the stormwater captured in the cittern must be fully re-used in the first 72 hours after the storm event. Prepare a rainwater reuse schedule to confirm that the cittern:

Photo: Cistern used to capture runoff from the rooftop an irrigate a nearby bioretention BMP. (Source: Wood E&IS)

- Is allowed by City code:
- is appropriately sized to meet the demand for the intended reuse application;
- sufficiently draws down stored water within 72 hours after capture to maintain available cistern storage for the next storm event;
- accommodates the variation in storage demand as a result of season or high/low use periods;
- ✓ accounts for bypass and overflow runoff volumes in overall site design.

Other design requirements are as follows.

- Include one or more pretreatment measures to remove debris, dust, leaves, and other materials before stormwater enters the cistern.
- Fully cover or enclose the stored water to avoid potential mosquito breeding

Version: January 2021

1/8/2021

Manufactured Treatment Devices

- Flow-through technology
- Effectiveness on is fiercely debated

The Good:

- Good for gross solids (litter, debris, etc.) or special pollutants (e.g., oil)
- Small footprint or underground

The Bad:

- Limited data on sediment removal
- Frequent maintenance is a must
- Some require replacement cartridges

Bottom of concrete structure is only 1.2m below pipe.

Manufactured Treatment Device Policies

Chapter 3 Section 3.7

Topeka Stormwater BMP Design Handbook

MTD Policies

- Considered on a case-by-case basis
- City will evaluate appropriateness and capability of MTD for the pollutants, land use, and owner situation
- Encouraged to consult the City <u>before</u> design
- Provide make, model, size, flow rate, manufacturer and vendor information in SWMP and As-Built Plan
- Install same exact MTD as shown on approved SWMP
- See City website for MTDs that have a Value Rating

23

Questions from last class

> For a subdivision w/ private roads:

- Who maintains the stormwater quality BMPs?
- The owner(s) of the property where the BMP is located.
- Will Homeowner's Associations be required to perform BMP maintenance?
- Yes, if the HOA is the property owner
- Can BMPs be placed in the public ROW?
- No, private developments cannot place BMPs in the public ROW

Introduction to LID & Green Infrastructure

Driver: NPDES-MS4 Permit requirements

- Applies to new/redevelopments > 1 acre land disturbance
- Consider structural and non-structural strategies
- Ensure the long-term BMP maintenance and operation

Original EPA requirements (circa 2003)

Typical Site-Level Stormwater Controls Since 2003

Typical Stormwater Quality BMPs

Extended Detention Ponds:

- Good for slowing runoff
- Removes pollutants through settling
- Can provide flood protection

Manufactured Treatment Devices

- Small or no footprint
- Swirling, baffling, separation, etc.

We get pollutant <u>removal</u> rather than pollutant <u>prevention</u> all by using structural BMPs only!

1.2.2.2

EPA says...

...this approach is missing the mark!

Still seeing:

- Water quality degradation
- Habitat alteration
- Eroding streambanks

We are not addressing Impervious Surfaces

- Roof, pavement, packed gravel, soils compacted by urban development, etc.
 - Impenetrable surface prohibits *infiltration*
 - Loss of vegetation eliminates <u>evapotranspiration</u>
 - Development means higher peak flows and volume
 - So, more pollutants downstream

EFFECTS OF IMPERVIOUSNESS ON RUNOFF AND INFILTRATION

NATURAL GROUND COVER 0% Impervious Surface

Source: Arnold and Gibbons (1996) Impervious Surface Coverage

EPA Introduces LID & Green Infrastructure

Use soil and vegetation to manage rainfall where it falls

Intent:

- mimic pre-development, natural hydrology
- Reduce runoff **VOLUME**
- > Why?
 - Stormwater carries pollutants
 - Less stormwater = less pollutants
 - Multiple benefits:
 - Viable habitat (vegetation and soil)
 - Healthier streams
 - Less infrastructure, reduced detention needs
 - Better air quality (trees)
 - Better quality of life

Why LID and Green Infrastructure?

filtering pollution as the rainwater slowly sinks into the ground.

Source: Chesapeake Bay Foundation

Which site will have lower runoff?

How do LID and GI work?

- Infiltration (Soil): Volume reduction & pollutant removal
- Evapotranspiration (Vegetation): Volume reduction
- Plant Uptake (Vegetation): Volume reduction & pollutant removal
- Filtration (Soil and Vegetation): Pollutant removal & some infiltration

Volume reduction in GI-BMPs

Old way = 40% pollutant removal

New way = 82% pollutant removal when we account for volume removed

Why LID and GI? Hydrologic Mimicry!

Hydrologic Analysis of a Bioretention GI-BMP

Today's NPDES-MS4 Permit requirements

- Applies to new/redevelopments > 1 acre land disturbance
- Consider structural and non-structural strategies
- Ensure the long-term BMP maintenance and operation
- Develop and adopt a Design Manual or MARC Manual
- Stormwater Quality Protection
 - Include infiltration, evapotranspiration, & reuse
- Reduce post-development runoff to pre-dev. #'s
- Include green infrastructure BMPs (e.g., pervious pavement, native channels, bioretention, etc.)
- Stormwater Master Plan and regulate accordingly
 - Stream buffer ordinance
 - Site plan requirements
 - Minimize imperviousness/Maximize open space

Original EPA requirements (circa 2003)

DRAFT Kansas MS4 permit

Green is the New Gray

Traditional (Grey) Infrastructure LID & Green Infrastructure

Use basins, pipes & ditches to **reduce** pollutants in stormwater

Source: hydro-int.com

Use soil & vegetation to reduce stormwater **volume** (thus pollutants)

Source: Tompkins County NY (Bioswale)

What do LID and Green Infrastructure look like?

LID (non-structural)

- Pocket/Amenity Parks
- Walking trails
- > Open space plans
- Conservation areas
- Urban forests
- Water features
- Stream preservation
- Recharge zones
- Disconnection Areas

GI-BMPs (structural)

- > Bioretention areas
- Rain gardens
- > Urban bioretention
- Disconnection areas
- Infiltration basins
- Pervious pavers
- Permeable pavements
- Green roofs
- Cisterns

GI reliance on plants & soil

Green Infrastructure Practice (GIP)	Stormwater Quality Mechanism(s) Used	
Bioretention/Urban Bioretention Water Quality Channel (Dry) Downspout Disconnection Sheet Flow	Infiltration (without underdrain) Evapotranspiration Plant Uptake Soil Filtration (with underdrain)	
Infiltration Trench	Infiltration	
Green Roof Grass Channel	Evapotranspiration Plant Uptake Surface Filtration	
Permeable Pavement	Infiltration (without underdrain) Soil/Media Filtration (with underdrain)	
Reforestation	Infiltration Evapotranspiration Plant Uptake Surface Filtration	

How LID & GI reduce volume?

Healthy, Uncompacted Soil

- Allows stormwater to soak in
- > Infiltration, Filtration

NORMAL

COMPACTED

SOIL

Healthy Growing Plants

- Intercepts rainfall & soaks up stormwater
- Evapotranspiration, Nutrient Uptake

NO MOISTURE NO AIR

The Paradigm Shift for Site Design

Plants & Soil are now Infrastructure

In community & site planning: LID Opportunities

(considered in land use plans & site layouts)

During site design & construction: **BMP Design Elements** (have design criteria & shown on plans)

Construction Protection Areas

(clearly marked & avoided)

After construction: BMP Maintenance Elements

More detailed information on plants and soil is needed for design and as-built plans

Topeka Stormwater BMP Design Handbook

LID must be applied BEFORE DESIGN!

- Before clearing and grading!!
 - Integrate the development with the <u>natural</u> topography
 - Reinforce the site's <u>natural</u> hydrologic characteristics
 - Make use of the *natural* soils & vegetation for stormwater control

The Early Bird Gets the Worm!

Consider Soil and Vegetation <u>EARLY</u>!

- Ideally, as early as development tract speculation
- No later than when the site lot or building layout is being established

Why?

- Early recognition of opportunities or limitations can save time and money
- Less imperviousness = Less runoff = Less stormwater infrastructure
- Lower infrastructure costs
- Difficult to modify a site layout once its on paper
- Preservation costs less than Restoration

LID Design Process

- Gather data to characterize the hydrology of the EXISTING site
- > No calculations, tests, or studies
- Layout the impervious features to preserve as much of the existing hydrology as possible

Land Cover & Vegetation	Ponds, lakes, wetlands
Hydrologic Soil Groups	Drinking water sources, well heads, etc.
Topography / steep slopes	High water table
Karst (sinkholes, drop-outs)	Shallow bedrock
Key natural areas	Historic features
Contractive or expansive soils	Site layout (if developed at the time)
Streams, seeps, springs	Relevant other data (e.g., wet basements)

Using LID techniques

Maximize the use of <u>natural</u> soil and vegetation to minimize and manage stormwater

- Minimize and disconnect imperviousness
- ✓ Maximize green space
- Preserve mature trees
- ✓ Limit clearing & grading
- ✓ Avoid well-draining soils
- ✓ Use green spaces for stormwater management
- ✓ Keep stream buffers
- Fit the development to the land rather than the land to the development

Low-cost LID aesthetics & amenities

LID can provide other value

GI-BMP Policies

Introduction

> Heather Williams, Senior Project Manager

Purdue University: BS Civil Engineering

16 Years at Wood:

- Stormwater program development & implementation
- Construction & post-construction programs & compliance
- Green infrastructure planning & design
- Ordinance, policy, incentive reviews
- Municipal clients include: Atlanta, Birmingham, Auburn, Nashville, Philadelphia, Indianapolis, & Boulder

Learning Objectives

- General types of green infrastructure BMPs
 - Meeting multiple objectives
- Landscape Ordinance Incentive
- Policies
 - Soils and infiltration guidance
 - Underdrains
 - Plants
- Design Procedure Forms
- Common Problems

Polling Question

Topeka Stormwater BMP Design Handbook Which GI-BMP are you most familiar with and/or do you most often use in your site designs to meet water quality requirements?

- Rain Gardens
- Native Vegetation Swale
- Infiltration Basin or Trench
- Bioretention
- Permeable Surfaces
- Green Roofs
- Cisterns/Rainwater Harvesting

Topic: Green Infrastructure BMPs

Manual Section # 3.11

Topeka Stormwater BMP Design Handbook

Table 3-8. Multi-Objective GI-BMPs

GI-BMP Name & Treatment Approach

Rain garden & native vegetation swale *Treatment approach: infiltration & evapotranspiration

Infiltration basin & infiltration trench *Treatment approach: infiltration

Bioretention *Treatment approach: infiltration & evapotranspiration

Pervious concrete, porous asphalt, & modular concrete block *Treatment approach: infiltration & filtration

Green roofs

*Treatment approach: infiltration & evapotranspiration

Cisterns

*Treatment approach: capture and reuse

Possible Design Objectives in Addition to Stormwater Quality Management

ually attractive landscaping leeting City code landscape requirements ublic education/support for sustainable practices

isually attractive landscaping feeting City code landscape requirements

ublic educat Design Information is

isually attra leeting City ischarge rec andscaped r tormwater c found in MARC

Manual

ublic education/support for sustainable practices

riveways and parking lots

ischarge receiving area for roof drains

ttractive hardscaping

tormwater quantity control (limited)

ublic education/support for sustainable practices

uilding rooftop

Mally attractive "roofscaping"

Green space for picnics, meetings, or relaxation of building

Policy and design defined in Handbook

12/18/2020 Refer to Section 3.11 Aligning Stormwater Quality and Quantity Designs for more information

Rain Garden

- Visually attractive landscaping
- Meeting City code landscape requirements
- Public education
- Support for sustainable practices

Native Vegetation Swale

- Visually attractive landscaping
- Meeting City code landscape requirements
- Public education
- Support for sustainable practices
- Creates pollinator habitat

Bioretention

- Visually attractive landscaping
- Meeting City code landscape requirements
- Discharge receiving area for roof drains & parking lots
- Landscaped parking lot islands
- Stormwater quantity control (limited)
- Public education
- Support for sustainable practices

Permeable Surfaces

- Driveways and parking lots
- Discharge receiving area for roof drains
- Attractive hardscaping
- Public education
- Support for sustainable practices

Green Roofs

- Building rooftop
- Visually attractive "roofscaping"
- Green space for picnics, meetings, or relaxation of building tenants or workers
- Public education
- Support for sustainable practices

Cisterns

- Non-potable water source for landscape or garden water toiletwater, etc.
- Public education
- Support for sustainable practices

Putting it Together: Treatment Trains

SECTION

© LEE+PAPA AND ASSOCIATES, INC.

GI BMP Location

- Front and center is better!
- Create a "showcase"
- Integrate it into the property aesthetic and amenities
- Provide easy & <u>unimpeded</u> access for inspection & maintenance
- Provide public education signage

Triple Bottom Line (TBL) Analyses

Landscape Credits (TMC Chapter 18.235)

BMP Type	Stormwater BMP Credit (see TMC Chapter 18.235.090)	
VEGETATED BMPS ¹		
Native Vegetation Preserved/Established	20%	
Rain Garden		
Bioretention		
Vegetated Filter Strip		
Native Vegetation Swale ²		
BMPS THAT REDUCE IMPERVIOUS AREA		
Green Roof	10%	
Pervious Concrete		
Porous Asphalt		
Modular Concrete Block		
Cistern		
INFILTRATION BMPS		
Infiltration Basin	100/	
Infiltration Trench	10%	
DETENTION BMPS ¹		
Extended Wet Detention	10%	
Extended Dry Detention (native vegetation) ²		
MEDIA FILTRATION BMPS		
Surface Sand Filtration		
Underground Sand Filter	0%	
Pocket Sand Filter		
Perimeter Sand Filter		
OTHER SYSTEMS (Manufactured Treatment Devices)		
Proprietary Media Filtration	0%	
Hydrodynamic Devices		
Baffle Boxes		
Catch Basin Inserts		

12/18/2020

Refer to Section 3.4.2. Landscape Credits

Multidisciplinary Design Team

- Involve whole team in design process
- Collaborate on site layout
- Ensure team stays involved throughout design and construction
 - Engineer
 - Landscape Architect
 - Soil Scientist
 - Forestry and Ecology

Vegetated GI BMPs

GI BMPs are like Layer Cakes

This Photo is licensed under <u>CC BY-SA-NC</u>

Topeka Soils Map

Infiltration BMPs - Underdrain

An underdrain is required unless ALL of the Site Suitability Criteria for Full Infiltration listed in Policy 3 are met

Policy 3 says ALL of the following requirements must be met:

BMP must be located:

- in HSG A, B, or C
- **100+ feet** from drinking water supply in a sensitive aquifer, **50+** feet in a nonsensitive aquifer
- More than **1,000 feet up-gradient** or 100 feet down-gradient of karst features
- **10+ feet** away from a building/structure
- 200+ feet from the toe of a slope that is greater than or equal to 20%
- 35+ feet away from a septic drainfield

There is more than **3ft of separation** distance from bottom of BMP to the elevation of the seasonally **saturated soils or top of bedrock**

BMP doesn't receive stormwater discharges from a stormwater **hotspot** or area of known soil contamination

A groundwater mound forming beneath the BMP doesn't extend into the BMP

In-situ soil under the BMP is >1 in/hr and <11 in/hr

Refer to Section 3.5.4 Underdrain Policy

In-Situ Infiltration Requirements

BMPs w/ Underdrains: two approaches BMPs w/ out underdrains shall use the preferred approach

Infiltration testing using protocols in **Section 3.5.5** (shown in a few slides)

Provide infiltration rates from the most current **USDA-NRCS Soil Survey**

Infiltration Testing Requirements

- Professional required
- 2. Suitable weather conditions
- 3. Two tests required for every 3,000-10,000 sf of BMP area
- 4. Test elevations to be at or below the bottom of the BMP
- 5. Soil borings required
- 6. Double-ring infiltrometer or modified Philip Dunne infiltrometer are acceptable
- 7. Post-construction field infiltration tests may be required

In-Situ Infiltration Test Rules

Infiltration rate vs. Percolation Rate

- Infiltration BMPs require drawdown time to avoid nuisance flooding
- Permeability rate of the "in situ" soil
- <u>Percolation rate is NOT equivalent to</u> <u>an infiltration rate</u>
- Percolation rates tend to overestimate-can be off by a factor of 10 or more
- Use the Double Ring Infiltrometer Test (ASTM D 3385)!!

Perc Test Procedure

Bioretention Soil Mix (BSM)

Critical to success or failure

- Aids in infiltration
- Natural detention
- Plant health

Must be properly specified, mixed and placed

- Soil texture
- Soil permeability
- pH-acidic, neutral, or alkali
- Toxicity
- Nutrient levels
- Minerals
- Salinity
- Engineered soil mix shall be sufficient to support plant life and meet the desired infiltration rate for the MAIN TREATMENT AREA OF THE BASIN
- Protected DURING and AFTER Construction
- Field verified and tested

12/18/2020

See Appendix A Section 9003 of the MARC Manual for more info on Bioretention Facilities

Bioretention Soil Mix Specs.

ltem	Composition By Volume	Reference
Planting Soil	30%	See below.
Organic Compost	20%	See below.
Sand	50%	ASTM C33 Fine Aggregate

Planting Soil: The USDA textural classification of the Planting Soil for the BSM shall be LOAMY SAND OR SANDY LOAM. The Planting Soil shall be the best available on site material or furnished. Additionally, the Planting Soil shall be tested and meet the following criteria or as approved by the Engineer:

Item	Percent By Weight	Test Method	
Sand (2.0 – 0.050 mm)	50 - 85%	AASHTO T88	
Silt (0.050 – 0.002 mm)	0 - 50%	AASHTO T88	
Clay (less than 0.002 mm)	2 – 5%	AASHTO T88	
Organic Matter	3 – 10%	AASHTO T194	

See **Appendix A Section 9003** of the MARC Manual for more info on Bioretention Facilities

BIORETENTION

Mulch

Twice-shredded hardwood bark

- Aged a minimum of 6 months
- 50/50 bark and wood
- Maximum of 4 inches
- Free from sawdust, clay, soil, and other foreign materials

See Appendix A Section 9003 of the MARC Manual for more info on Bioretention Facilities

12/18/2020

See Appendix A of the MARC Manual for more info on Bioretention Facilities

- Dependent on soil mix
- Native plant species are preferred
 - Adapt to environment conditions
 - Drought resistant
 - \circ Water tolerance
 - Usually reseed
- Variety of species
- Trees, shrubs, grasses should be spaced according to mature size

- NO aggressive, noxious, or invasive species permitted
- NO woody vegetation at inflow locations
- NO plants or plant placement that will cause traffic safety problems
 - Preserve line of site

- > When specifying trees:
 - Provide sufficient landscape width (rule of thumb 8 to 10ft)
 - Locate trees on side slopes not in areas that pond
 - Select trees that will tolerate salt and wet soils
 - Locate trees away from perforated pipes
 - Consider maintenance
 - Deciduous plant material that will drop leaves and can impair the function if not located properly

Figure D-5. Planting Zones for Bioretention Facilities (Source: Georgia Stormwater Management Manual, 2016)

See Appendix A of the MARC Manual for more info on Bioretention Facilities

Plant choices can vary for different areas of the BMPs

Planting templates can differ for the desired aesthetic!

Refer to Section 2.5.3 Stormwater BMP Planting Plan for more information

Plant/Vegetation: Additional Resources

- Kansas Native Plant Society
- Kansas State Extension Office – recommended plants
 - Trees and Shrubs
 - Grasses and Sedges
 - Ferns
 - Wildflowers

- The Kansas Native Plant Society (<u>www.kansasnativeplantsociety.org</u>)
- Kansas Wildflowers and Grasses website (<u>www.kswildflower.org</u>)
- Kansas Native Plants Plant Guide (<u>www.kansasnativeplants.com</u>)

Appendix A of the *MARC/APWA BMP Manual* (<u>http://kcmetro.apwa.net/PageDetails/439</u>)

Design Procedure Forms

Design Procedure Forms

Stormwater BMP Design	City of Topeka, KS			
Handbook	Design Procedure Form			
Appendix E.1	Infiltration Basin			
Designer:				
Checked By:				
Company:				
Date:				
Project:				
Location:				
MARC/APWA BMP Ma	nual Assigned Value Rating: 9.0			
I. Water Quality Runoff Volume, WQ.				

1. Water Quality Runon volume, we	<u>w</u>	
Step 1) Tributary drainage area, A (acres) (2 acres or less)		A (acres) =
Step 2)Percent impervious of tributary area, I	(%)	I (%) =
Step 3) Volumetric runoff coefficient $R_{\psi} = \ 0.05 \ + \ I \ (0$.009)	R _v =
Step 4) Rainfall event in inches, P (in) (Water Quality Storm of 1.37 inc	hes)	P (in) =
Step 5) Water quality volume (acre-ft) $WQ_v = \frac{(P)(R_v)}{12}$	(<u>A</u>)	WQ _v (acre-ft) =
II. Basin Design Depth		
Step 1) Soil infiltration rate, f (in/hr) (See Section VII for how to determ	nine infiltration rate)	f (in/hr) =
Step 2)Design ponding time, t (hours) (Maximum ponding time 72 hour	;)	t (hrs) =
Step 3) Maximum design depth, d_{max} (inches) $d_{max} = (f)(a_{max})$)	d _{max} (in) =
III. Design Requirement		
Step 1)Length to width ratio (3:1 or greater)		Ratio =
Step 2)Side slopes (3:1 or flatter)		Slope =
Step 3) Ponding depth (Maximum ponding depth of 2 fe	et)	Depth =
Version: January 2021 Cit	v of Toneka, Kansas	Page F 1-1

Stormwater BMP Design Handbook Appendix E.1 Design Procedure Form - Infiltration Basin continued

IV. Vegetation

A Stormwater BMP Planting Plan shall be created to meet the policy outlined in Section 2.5.3 of the City of Topeka Stormwater BMP Design Handbook. Select vegetation for the infiltration basin by its ability to withstand wet weather, drought, and short periods of ponding (refer to Appendix A of the APWA/MARC BMP Manual).

V. Pretreatment

Describe pretreatment to be used with infiltration basin. Infiltration basins are susceptible to high failure rate due to clogging from sediments. Pretreating stormwater is necessary to remove as many suspended solids from runoff as possible.

VI. Emergency Spillway

Describe emergency spillway design. All basins must have an emergency spillway capable of passing runoff from the 25-year and greater, 24-hour storms without damage to the impounding structure.

VII. Infiltration Rate

Determining the in situ infiltration rate. Site designers have two options when designing the in situ soil infiltration rate(s) used to design the infiltration basin, as follows:

- a. Field infiltration tests of the in situ soil located beneath the bottom elevation of the infiltration BMP may be used to determine the design infiltration rate for the BMP. This is the preferred approach to determining the in situ infiltration rate. Field tests will yield results that reflect actual site conditions and allow the design to be optimized to these conditions. Tests shall be performed using the standard test protocols described in the Topeka Stormwater BMP Design Handbook*.
- b. In lieu of field infiltration tests, designers may use infiltration rates provided in the most current USDA-NRCS Soil Survey for Shawnee County, Kansas. The survey identifies a range of expected infiltration rates for each soil type. Designers who opt to use the NRCS soil survey must use the most conservative infiltration rate (i.e., the lowest infiltration rate of the range provided for the soil type). A digital copy is available at:

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

*See Section 3.5.4 Design Policies of the Topeka Stormwater BMP Design Handbook for further information on the infiltration testing requirements.

Version: January 2021

Refer to Appendix E. Stormwater BMP Design Procedure Forms for the full list