TABLE OF CONTENTS

1.0 Introduction .. 4
2.0 Development Conditions Warranting a Traffic Impact Study .. 4
 Table 1 – TIS Level Thresholds by Vehicles per Hour .. 4
3.0 Traffic Impact Study Level Thresholds ... 5
 Table 2 – Example Trip Generation Rates by Land Use ... 5
4.0 Qualifications Required to Conduct Traffic Impact Study .. 7
5.0 TIS Scope of Service .. 7
 Table 3 – Traffic Impact Study – Example Scope of Service ... 7
6.0 Key Traffic Impact Study Parameters .. 8
 6.1 TIS Level of Effort ... 9
 6.2 Study Area ... 9
 6.3 Analysis Periods .. 9
 6.4 Analysis Years ... 9
 6.5 Future Volume Development Method .. 9
7.0 Data Collection ... 9
 7.1 Project Site Characteristics ... 9
 7.2 Transportation System .. 10
 7.3 Traffic Volumes .. 10
8.0 Background Traffic Volumes ... 11
9.0 Trip Generation ... 11
10.0 Trip Distribution and Assignment .. 12
11.0 Traffic Signal Warrant Analysis ... 13
12.0 Turn Lane Analysis .. 13
 12.1 Unsignalized Intersections - General Considerations ... 15
 12.2 Signalized Intersections .. 16
 12.3 Turn Lane Geometric Design Considerations .. 16
 12.4 Unsignalized Right Turns Lanes .. 16
13.0 Capacity Analysis ... 17
 13.1 Capacity Analysis Criteria .. 17
 13.2 Intersection Analysis .. 18
14.0 Safety Analysis ... 20
15.0 Site Circulation .. 20
16.0 Access Management .. 21
APPENDIX .. 22
 A. Traffic Impact Study Outline .. 22
Acronyms:

AADT Annual Average Daily Traffic
AASHTO American Association of State Highway and Transportation Officials
ADT Average Daily Traffic
DDHV Directional Design Hourly Volumes
HCM Highway Capacity Manual
HCS Highway Capacity Software
ITE Institute of Transportation Engineers
KDOT Kansas Department of Transportation
LOS Level of Service
MUTCD Manual on Uniform Traffic Control Devices
NCHRP National Cooperative Highway Research Program
PE Professional Engineer
PHF Peak Hour Factor
PTOE Professional Traffic Operations Engineer
Sq. Ft. Square Feet
TIS Traffic Impact Study
VPH Vehicles Per Hour

Definitions:

Level of Service (LOS): A quantitative stratification of a performance measure or measures that represent quality of service, measured on an A-F scale, with LOS A representing the best operating conditions from the traveler’s perspective and LOS F the worst. The Highway Capacity Manual (HCM) analysis procedures are used to obtain the level of service.

Traffic Impact Study: Primarily used to estimate the amount of vehicular traffic that would be expected from the proposed development as compared to any previously approved plans or the land use identified on the Future Development Plan. Determines the potential operational impacts to the existing street network and predicts how roadway modifications could mitigate or improve the public street system.

Trip Generation: The process of forecasting the number of vehicle trips generated by a proposed development based on the development size, number of employees, or dwelling units according to land use type.
TRAFFIC IMPACT STUDY GUIDELINES

1.0 Introduction

The City of Topeka has developed the following guidelines to be used to complete Traffic Impact Studies (TIS) as part of the planning of proposed land development projects. The purpose of these guidelines is to establish uniform criteria to be used for the developments that require a TIS to determine potential impacts to the existing street network. These guidelines will help in the communication and coordination between all parties who conduct business with the City of Topeka.

This document provides the following objectives:
- Identifies when a TIS is required
- Establishes minimum qualifications to complete a TIS
- Standardizes traffic impact study procedures and documentation

If determined by City staff, a TIS shall be submitted concurrently with or prior to the subdivision plat or development plan. Any impacts to the street system should be identified and resolved prior to the approval of the subdivision plat or development plan. For any development plan being considered by the Planning Commission, impacts should be identified and resolved prior to publication of the public hearing notice and the written staff recommendation to the Planning Commission. A failure to resolve identified impacts prior to the publication of the hearing may require that the plat or development plan be rescheduled to a later Planning Commission meeting.

2.0 Development Conditions Warranting a Traffic Impact Study

A tiered TIS level system is proposed to establish necessary traffic information for City staff to assist in the evaluation of a proposed development plan. The different levels for a TIS will be defined by the anticipated amount of site-generated vehicular traffic. Table 1 defines the different TIS levels.

<table>
<thead>
<tr>
<th>Level of Study</th>
<th>Threshold (vph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0-20</td>
</tr>
<tr>
<td>Level 2</td>
<td>21-99</td>
</tr>
<tr>
<td>Level 3</td>
<td>100 – 499</td>
</tr>
<tr>
<td>Level 4</td>
<td>≥500</td>
</tr>
</tbody>
</table>

A TIS is required to be submitted with any development plan or preliminary plat submittal with the following exceptions:
- A single-family residential development that is not proposing a new access point to a collector or arterial roadway.
● Changes to a previously approved plan or plat with an increase in square footage that is less than 10%, unless a high traffic generator is proposed (i.e. fast-food restaurant, coffee shop, etc.) If a high generator is proposed, a trip generation memorandum may be required to determine if a full TIS is required.

● A Revised Preliminary Development Plan that does not require a public hearing; however, if the plan includes a change in use that is expected to generate an increase in trips, a TIS will be required to document the change and evaluate the impact.

● A reduction in square footage, unless a high traffic generator is proposed (i.e. coffee shop, fast-foot restaurant, etc.).

● In general, religious facilities will be exempt from providing a TIS; however, if there are multiple uses proposed on site (i.e. event center), a TIS may be required to evaluate the impact.

● A building addition with no increase in traffic generation or need for additional parking will not require a TIS.

Applicants should consult with City staff prior to beginning a TIS to confirm the scope, assumptions, and schedule to avoid unnecessary delays.

3.0 Traffic Impact Study Level Thresholds

The level of analysis for a TIS is proportional to the vehicle trip generation from a given project and is shown in Table 1. Site-generated trips should be calculated using the latest edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. The volume thresholds shown in Table 1 represent the vehicles per hour (vph) estimated to be generated by the proposed net trips.

Table 2 provides a list of example trip generation rates for a variety of land uses which would generate vehicle trips greater than 100 vehicles per hour (vph) or 500 vph. For land uses not listed in Table 2, trip generation rates should be developed by the Project’s Traffic Engineer to estimate the level of effort required for the traffic impact study. In cases where the current version of the ITE Trip Generation Manual differs from Table 2, the most recent ITE Trip General Manual shall be used.

<table>
<thead>
<tr>
<th>ITE Code</th>
<th>Land Use</th>
<th>Units</th>
<th>Size to Generate 100 vph</th>
<th>Size to Generate 500 vph</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Light Industry</td>
<td>Sq. Ft.</td>
<td>135,000</td>
<td>675,000</td>
</tr>
<tr>
<td>130</td>
<td>Industrial Park</td>
<td>Sq. Ft.</td>
<td>295,000</td>
<td>1,470,000</td>
</tr>
<tr>
<td>140</td>
<td>Manufacturing</td>
<td>Sq. Ft.</td>
<td>135,000</td>
<td>675,000</td>
</tr>
<tr>
<td>150</td>
<td>Warehouse</td>
<td>Sq. Ft.</td>
<td>555,000</td>
<td>2,780,000</td>
</tr>
<tr>
<td>210</td>
<td>Single Family</td>
<td>Units</td>
<td>106</td>
<td>532</td>
</tr>
<tr>
<td>ITE Code</td>
<td>Land Use</td>
<td>Units</td>
<td>Size to Generate 100 vph</td>
<td>Size to Generate 500 vph</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>220</td>
<td>Multi-Family (Townhomes/Condos)</td>
<td>Units</td>
<td>197</td>
<td>980</td>
</tr>
<tr>
<td>221</td>
<td>Multi-Family (Mid Rise - 3 to 10 Levels)</td>
<td>Units</td>
<td>260</td>
<td>1,285</td>
</tr>
<tr>
<td>254</td>
<td>Assisted Living</td>
<td>Beds</td>
<td>420</td>
<td>(A)</td>
</tr>
<tr>
<td>310</td>
<td>Hotel</td>
<td>Units</td>
<td>170</td>
<td>(A)</td>
</tr>
<tr>
<td>445</td>
<td>Multiplex Movie Theater</td>
<td>Screens</td>
<td>(D)</td>
<td>(D)</td>
</tr>
<tr>
<td>480</td>
<td>Soccer Complex</td>
<td>Units</td>
<td>(D)</td>
<td>(D)</td>
</tr>
<tr>
<td>495</td>
<td>Recreation Community Center</td>
<td>Sq. Ft.</td>
<td>40,000</td>
<td>200,000</td>
</tr>
<tr>
<td>560</td>
<td>Church</td>
<td>Sq. Ft.</td>
<td>(D)</td>
<td>(D)</td>
</tr>
<tr>
<td>565</td>
<td>Daycare</td>
<td>Sq. Ft.</td>
<td>9,000</td>
<td>(A)</td>
</tr>
<tr>
<td>710</td>
<td>General Office</td>
<td>Sq. Ft.</td>
<td>66,000</td>
<td>330,000</td>
</tr>
<tr>
<td>720</td>
<td>Medical Office</td>
<td>Sq. Ft.</td>
<td>25,500</td>
<td>(A)</td>
</tr>
<tr>
<td>750</td>
<td>Office Park</td>
<td>Sq. Ft.</td>
<td>(B)</td>
<td>375,000</td>
</tr>
<tr>
<td>812</td>
<td>Bldg. Materials</td>
<td>Sq. Ft.</td>
<td>45,000</td>
<td>(A)</td>
</tr>
<tr>
<td>813</td>
<td>Discount Superstore</td>
<td>Sq. Ft.</td>
<td>(B)</td>
<td>115,000</td>
</tr>
<tr>
<td>816</td>
<td>Hardware Store</td>
<td>Sq. Ft.</td>
<td>34,000</td>
<td>(A)</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
<td>Sq. Ft.</td>
<td>(C)</td>
<td>147,000</td>
</tr>
<tr>
<td>840</td>
<td>Automobile Sales (New)</td>
<td>Sq. Ft.</td>
<td>42,000</td>
<td>(A)</td>
</tr>
<tr>
<td>850</td>
<td>Supermarket</td>
<td>Sq. Ft.</td>
<td>11,500</td>
<td>56,000</td>
</tr>
<tr>
<td>945</td>
<td>Convenience Market w/ Gas Pumps</td>
<td>Fuel Pos.</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>816</td>
<td>Hardware Store</td>
<td>Sq. Ft.</td>
<td>34,000</td>
<td>(A)</td>
</tr>
<tr>
<td>881</td>
<td>Pharmacy w/ Drive Thru</td>
<td>Sq. Ft.</td>
<td>10,000</td>
<td>(A)</td>
</tr>
<tr>
<td>912</td>
<td>Drive-In Bank</td>
<td>Sq. Ft.</td>
<td>5,000</td>
<td>(A)</td>
</tr>
<tr>
<td>931</td>
<td>Quality Restaurant</td>
<td>Sq. Ft.</td>
<td>13,000</td>
<td>(A)</td>
</tr>
<tr>
<td>932</td>
<td>High Turnover Sit Down Rest.</td>
<td>Sq. Ft.</td>
<td>11,000</td>
<td>(A)</td>
</tr>
<tr>
<td>934</td>
<td>Fast Food w/Drive Thru</td>
<td>Sq. Ft.</td>
<td>3,000</td>
<td>(A)</td>
</tr>
<tr>
<td>937</td>
<td>Coffee/Donut Shop w/ Drive Thru</td>
<td>Sq. Ft.</td>
<td>(B)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Institute of Transportation Engineers (ITE) _Trip Generation, 11th Edition_

(A) Land use typically does not generate more than 500 vph as standalone use.
(B) TIS required due to land generating more than 100 vph.
(C) Shopping Center land use applied to development with multiple commercial retail centers with shared parking.
(D) Peak generator times for land use typically occur during Friday or over the weekend. Traffic Engineering will determine the study analysis days and time periods to account for the weekend peak hour.
If a proposed development land use changes during the developer’s design process the trip generation table shall be updated. If the cumulative changes in the trip generation results in an increase of more than 50 trips or 5% of the total development trip generation, whichever is greater, the entire TIS shall be updated. Both the final trip generation anticipated at the development and the trip generation used for the rest of the TIS shall be shown in the TIS if they differ.

4.0 Qualifications Required to Conduct Traffic Impact Study

It is the applicant’s responsibility to prepare a qualified traffic impact study meeting the guidelines defined within this document. The TIS is required to be signed and sealed by a Professional Engineer (PE) licensed in the State of Kansas with relevant TIS experience.

5.0 TIS Scope of Service

Prior to conducting a TIS, the applicant or their representative should develop a scope of service in consultation with City staff to meet the TIS requirements for the Project. Table 3 provides a summary of the typical scope items expected to be included within the TIS; however, additional detail may be requested by the City for certain tasks due to local knowledge of the area to address concerns or meet other prior planning or engineering requirements. The scope of service should be determined with City staff prior to completing the study to ensure the TIS will adequately address all technical requirements.

Table 3 – Traffic Impact Study – Example Scope of Service

<table>
<thead>
<tr>
<th>Traffic Impact Study Requirements</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projected New Peak Hour Site-Generated Automobile Trips by Project</td>
<td>0-20</td>
<td>21-99</td>
<td>100-499</td>
<td>> 500</td>
</tr>
<tr>
<td>(Latest Edition ITE Trip Generation Manual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location Description</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Land Use - Existing and Proposed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Connectivity and Circulation Review</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trip Generation Estimate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Access Management Review</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adjacent Access Spacing - Upstream and Downstream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Street Functional Classification</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intersection Sight Distance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Existing ADT Traffic Volumes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Future ADT Volumes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obtain Current Intersection Turning Movement Peak Period Volumes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Truck Volumes & Circulation (Existing and Proposed if Commercial or Industrial)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
6.0 Key Traffic Impact Study Parameters

Below are key traffic impact study parameters that should be defined prior to completing the TIS. The applicant or their representative should discuss the following parameters to help define the TIS scope of service in consultation with City staff.

<table>
<thead>
<tr>
<th>Traffic Impact Study Requirements</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian and Bicycle facilities</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Assignment Distribution Assumptions</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Generation Reduction Assumptions or Pass-By Trips</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Operation Analysis Scenarios</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Condition (no development)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing plus Site-Generated Traffic (Full Build Only)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing plus Site-Generated Traffic (Major Phases to Full Build)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing plus Future Background Volumes (No Build)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing plus Site-Generated and Future Background Volumes (Full Build)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Operation Analysis Requirements</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity analysis signalized and unsignalized study intersections</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUTCD Signal Warrant Analysis</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn Lane Warrant Analysis</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Analysis</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain Crash Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarize Crash Data (Location, Severity, Type)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary/Recommendations</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection and Roadway Geometric Recommendations</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Control Recommendations (Stop Sign, Signal, or Roundabout)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn Lane Recommendations (Including Storage Length)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1 **TIS Level of Effort**

The determination of the TIS level is based on the above criteria.

6.2 **Study Area**

Defining the limits of the study area is very important for all levels of traffic impact studies. The study area is dependent on a variety of variables – size of development, number and location of driveways (both existing and proposed), roadway classification, and influence that the proposed access will have on the street segment or adjacent intersections. Final determination of the study area will be determined by City staff.

6.3 **Analysis Periods**

The TIS should be completed during the peak commuter periods. The peak periods are dependent on both the street network peak volume conditions as well as the peaking characteristic for the development type. Typical analysis periods include the AM and PM peak hours during a typical weekday. Typical weekday is defined as Tuesday, Wednesday, or Thursday. The typical weekday peak periods typically range from 7:00 A.M to 9:00 A.M. and 4:00 P.M to 6:00 P.M.

The proposed development type can define the traffic analysis periods. Certain land uses (near schools, etc.) may require alternate analysis during off peak commuter periods or over specific weekend periods, including possible holiday weekends.

6.4 **Analysis Years**

The TIS will analyze the opening year of the development. Level 3 and 4 studies will analyze 20 years in the future. For significantly large or long duration build projects, additional development periods may be required to account for build years or phased projects.

6.5 **Future Volume Development Method**

Future year background traffic volumes should be developed using a growth rate approved by the City Traffic Engineer. Growth rate can be developed based on a review of available historic traffic volumes and comparing them to future volumes available in special study areas. In mature portions of the City, the growth rate may be minimal.

7.0 **Data Collection**

The applicant or their representative is responsible for obtaining the necessary data to complete a traffic study that meets these requirements. The following data should be assembled for each TIS.

7.1 **Project Site Characteristics**

The following descriptions of the existing and proposed land use for the development site should be included.
a. **Existing Condition:** Identify and document the existing land use and currently zoned land use per the City’s current zoning map as well as the adopted Future Land Use Development Plan Map.

b. **Proposed Plan (Project):** A description of the proposed site plan should be provided. The description should include an exhibit of the proposed development that shows the number of access points, internal street network, and proposed land uses.

c. **Surrounding Developments:** Any pending or approved planned developments near the proposed project should be documented. The extent of surrounding developments located in close proximity to the proposed development commensurate with the size of the proposed development shall be included in the TIS. The addition of site-generated traffic from approved developments will be included as part of background traffic growth. Surrounding development extent must be approved by City staff.

d. **Previously Approved Traffic Impact Studies:** If a TIS was completed and approved for the development area, the study should be referenced, and the trip generation assumptions and recommendations should be reviewed and noted. If the previous TIS is not available, then site-generated traffic should be estimated based on the previous development plan for comparison with the new development plan.

7.2 Transportation System

Include a description of the existing transportation network located adjacent to the project or within the study area. Data should include:

a. Functional classification of the roadway

b. Posted speed limit

c. Description of the roadway section (number of thru lanes, turn lanes, curb & gutter, rural ditch section, etc.)

d. Intersection control types (two-way stop control, roundabout, traffic signal, etc.)

e. Existing signal phasing, including left-turn phasing

f. Available sight distance (both horizontal and vertical) at access points. New access points may require field measurements

g. Pedestrian and bicycle facilities (existing and planned)

h. Existing or proposed transit routes

i. Identify any planned improvements to adjacent street(s) or intersection(s)

7.3 Traffic Volumes

a. **Daily Traffic Volumes:** For Level 2 traffic impact studies, existing Average Daily Traffic (ADT) traffic volumes can be obtained using City of Topeka or KDOT traffic volume maps, available online. If not available, the Project’s Traffic Engineer may be required to obtain current daily traffic counts adjacent to the Project area. For Level 3 and 4 TIS, new traffic counts are required.
b. **Intersection Turning Movements:** Level 3 and 4 traffic impact studies require new peak hour intersection turning movement counts which capture the demand flow rate for each movement. Intersection turning movement counts should be completed based on the anticipated peak hour for the Project. This is typically found on a weekday between the periods of 7:00 to 9:00 A.M. and 4:00 to 6:00 P.M. City staff may require other time periods based on the Project or proposed land use.

Intersection turning movement counts shall be completed in 15-minute increments and should capture the heavy vehicle percentage along with any pedestrians or bicyclists. A minimum of 1.5 hours shall be counted in order to capture the peak hour prior. Queuing shall be included and accounted for during oversaturated conditions as per the Highway Capacity Manual. The calculated Peak Hour Factor (PHF) shall be provided for each intersection and used in the capacity analysis. If turning movement counts are available from a previous study, the counts must be within three years and/or approved for use by Public Works.

8.0 Background Traffic Volumes

Background traffic is defined as the traffic volumes obtained or recorded for the study intersection(s) prior to the development occurring. Balancing the traffic volumes between study intersection(s) will help with the traffic assignment process. Project generated trips will be assigned on top of the existing background volumes.

Future year background traffic growth should be developed using a growth rate developed based on review of historic traffic volumes or from available future year ADT volumes. The existing background volumes should be projected using the calculated growth rate. Project generated trips will be added to the future year background volumes.

9.0 Trip Generation

Anticipated traffic for the Project should be estimated using trip generation methods and procedures defined in the ITE Trip Generation Manual, 11th Edition or latest edition. The land use codes and trip generation volume examples provided in Table 2, in Section 2.0, are from the ITE Trip Generation Manual, 11th Edition. The Trip Generation Manual should be used to determine the process for selecting the appropriate average rate or equation for each land use code. If the Trip Generation Manual recommends local data to be collected, prior approval from City staff is required to use any values other than locally collected data.

A table to summarize the trip generation for the Project should be included in the TIS report. The table should include the land use code, unit used (i.e. square feet, number of dwelling units, rooms, etc.), projected ADT, peak hour volumes including directionality, and summary of project phases for larger developments.

Trip generation shall be calculated for the development analysis periods. Trip generation tables for the peak hour of the adjacent street should typically be used. For conditions during non-
typical peak periods, ITE Trip Generation Manual “Peak Hour of Generator” rates may be used for those conditions.

Trip generation for redevelopments, mixed-use development, larger developments, and certain types of land uses may choose to use some of these more advanced tools when determining the number of trips a site generates.

Net Trips: Redevelopment sites may determine the previously generated number of trips based on the ITE land use codes and subtract those from the proposed site development with approval from City staff. Depending on the intensity of the former development and the proposed development, this may result in the proposed development generating a net number of trips less than, approximately equal to, or more than, the existing site.

Mode Split: Mode split is the estimated number of travelers anticipated to use transportation modes other than automobiles. Mode split would require typical trip generation rates to be modified when the influence of non-automobile transportation modes is demonstrated and documented. Approval must be received from City staff prior to implementing a trip generation reduction for Mode Split. Mode split should occur prior to applying pass-by trips.

Pass-by Trips: If pass-by trips are used for the TIS, the generation of the pass-by trips should be documented and noted within the TIS report. Methods described in the ITE Trip Generation Handbook should be used to estimate pass-by trips. Pass-by trip rate should not exceed 10 percent of the adjacent street or 25 percent of the proposed development site-generation potential, whichever is less.

Mixed-Use Internal Capture: For mixed-use developments, internal site-generation capture procedures may be used. Methods defined in the Trip Generation Handbook for internal capture should be used. Approval must be received from City staff prior to implementing internal capture across collector or thoroughfare roads. The internal capture method should be clearly documented, and worksheets shall be provided with the TIS appendix.

10.0 Trip Distribution and Assignment

Trip distribution rates should be developed by reviewing the existing traffic patterns near the development and the respective location of the site within the City. The trip distribution percentages should be documented in a figure to visually represent the origins and destinations for the site-generated traffic.

Estimated vehicle-trips will be assigned to the existing and proposed street network using the trip distribution rates. Traffic assignment should be completed using judgement for the best routes to/from the development site for the identified analysis periods (i.e. AM and PM peak hours). Site generated traffic volumes should be documented in a figure. The proposed development volume scenario figures should include the total traffic with the site-generated traffic included in parenthesis. Resulting trip distribution and roadway assignment should be reviewed and approved by City staff prior to proceeding with analysis.
Provide traffic volume figures to summarize the traffic assignment for each traffic volume summary. Figures shall include total movement volumes, site-generated volume and how pass-by trips were assigned, if used.

11.0 Traffic Signal Warrant Analysis

Project access points or existing unsignalized intersection(s) that have volumes anticipated to meet one or more traffic signal warrants will require a traffic signal warrant analysis to be completed. Traffic signal warrant analysis should be completed using Manual on Uniform Traffic Control Devices (MUTCD) methodologies to determine which signal warrants may be met, if any. Signal warrant analysis should be included in the TIS and a recommendation with justifications should be provided. Note that Warrant 3, Peak Hour Warrant, shall be applied only in unusual cases as described in the MUTCD. Meeting only Warrant 3 may be insufficient evidence to justify the installation of a signal. It is ultimately the decision of the City to determine if/when a signal will be constructed at any given location.

12.0 Turn Lane Analysis

For locations where a new access point is added to a corridor that does not have the necessary turn lanes, either a left or right turn lane, turn lane warrant analysis will need to be completed. Left and right turn lanes provide separation of vehicles that are slowing or stopped to turn from the vehicles that are going through the intersection. Separating the turning vehicles minimizes turn-related crashes and eliminates unnecessary delay to the through vehicles. Based on data reported in National Cooperative Highway Research Report (NCHRP) 457, crash rate for unsignalized intersections can be reduced by 35 to 70 percent with the addition of a left-turn lane.

To evaluate the need for the auxiliary lanes, the turn lane warrant procedure documents in NCHRP 457 should be used. Variables used in the turn lane warrant analysis involve two-lane vs four-lane facility, major roadway speed, percent left-turn volume, advancing movement and the opposing volume. NCHRP 457 includes an Excel spreadsheet to assist with the turn lane warrant analysis. NCHRP Figure 2-5 should be used for the evaluation of left-turn lane at a two-way stop controlled intersection. NCHRP Figure 2-6 should be used to evaluate right-turn lanes.
NCHRP FIGURE 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
12.1 **Unsignalized Intersections - General Considerations**

A recommendation for either a left or right turn lane at an unsignalized location requires evaluation of both vehicular and non-vehicular impacts. Additional non-vehicular factors may need to be evaluated further. For any given turning location, the engineer should evaluate the vehicular traffic desires and when it can be demonstrated that vehicular operations may warrant a turn lane, an analysis of non-vehicular impacts shall be completed based on location specific factors. Public Works has ultimate decision for the addition of a left or right-turn lane in the Public Right-of-Way, especially on a 4-lane roadway or in tight urban dense environments.

Non-vehicular factors that should be considered include but are not be limited to:

- Potential negative impacts to usability of adjacent previously developed property.
- Utility relocations that may be required to accommodate the widened section and whether the cost and overall impact of such relocations outweigh the benefit of the turn lane.
- Impacts to adjacent sidewalks/trails. The engineer should evaluate whether the roadway widening will negatively impact the safety of pedestrians and bicyclists due to potentially requiring the trail/sidewalk to be located closer to the street and increased crossing distances.
- A contextual analysis of the need for a turn lane should be completed. For example, a turn lane may be warranted in a suburban type environment involving lower density land uses where prior development in the area also provided turning lanes, while it may be inappropriate to recommend a turn lane in a denser urban type area if prior development did not provide turn lanes.
- Existing or proposed on-street bike lanes where a right turn lane would create a weaving movement for more vulnerable roadway users.
12.2 Signalized Intersections

Determinations about whether to provide either left or right turn lanes for individual movements at signalized or future signalized intersections should be based on evaluation of level of service with goals to provide acceptable level of service, or in cases where this is not feasible for existing intersections, to maintain an appropriate level of service. Public Works will have the final approval for proposed geometric modifications within or impacting the Public Right-of-Way.

12.3 Turn Lane Geometric Design Considerations

Design of turn lanes should be completed per City of Topeka Design Criteria, Standard Specifications and Details. Below are design considerations when completing the geometric layout for an auxiliary lane:

- Left turn lanes shall be 200 feet plus the taper at the intersection with another arterial street and 150 feet plus the taper at other locations.
- Dedicated left-turn lanes are required on side streets or driveways intersecting arterial streets at full median breaks. Minimum distance shall be 150 feet plus the taper.
- The length of the left-turn lane shall be increased as necessary to accommodate estimated queue length. The minimum length shall be exceeded based on the estimated 95th percentile queue length determined for future traffic volume projections. The queue length shall be estimated using analysis procedures outlined in the latest edition of the Highway Capacity Manual published by the Transportation Research Board. Where the analysis is based on traffic signal control, existing cycle lengths shall be used when available, otherwise a 120 second cycle length should be used in the analysis.
- Unless otherwise approved by the City Traffic Engineer, left-turn lane lengths shall cover the full-width segment between the taper and the end of the lane at an intersection with a public street or driveway. The end of the lane at the intersection shall be determined as the point of curvature for the turning radius used for design of the particular intersection. Turning radius shall meet City of Topeka design standards.

12.4 Unsignalized Right Turns Lanes

Table 4 below provides guidance on requirements for right turn lanes at unsignalized intersections on thoroughfares. For intersections listed as requiring further evaluation, the engineer should provide an analysis of the non-vehicular traffic factors listed in Section 12.1 above along with a review of turning traffic shown in NCHRP Figure 2-6.
Table 4: Right Turn Lane Guidance on Arterial Roads - Unsignalized Intersections

<table>
<thead>
<tr>
<th>Intersecting Street/Drive Land Use</th>
<th>Intersecting Street or Drive</th>
<th>Thoroughfare Section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 lane undivided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 lane divided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 lane undivided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 lane divided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 lane divided</td>
</tr>
<tr>
<td>Residential**</td>
<td>Driveway</td>
<td>Not Required</td>
</tr>
<tr>
<td>Residential**</td>
<td>Local Street</td>
<td>Not Required</td>
</tr>
<tr>
<td>Residential**</td>
<td>Collector Street</td>
<td>Not Required</td>
</tr>
<tr>
<td>Non Residential</td>
<td>Driveway</td>
<td>Not Required</td>
</tr>
<tr>
<td>Non Residential</td>
<td>Local Street</td>
<td>Not Required</td>
</tr>
<tr>
<td>Non Residential</td>
<td>Collector Street</td>
<td>Not Required</td>
</tr>
<tr>
<td>Non Residential</td>
<td>Thoroughfare</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

* Evaluate peak hour turning movement and directional peak hour through volume according Section 9.0. Also evaluate impacts to pedestrian/bicycle facilities and other factors listed in Section 12.1 above.

** Residential defined as residential in the Current Topeka Regional Transportation Plan

13.0 Capacity Analysis

Capacity analysis shall be performed for each study intersection using methodologies described in the Highway Capacity Manual (HCM), 6th edition, or latest edition. All capacity analysis should be performed using city-approved software programs. The capacity analysis results should be reported using HCM methodologies.

13.1 Capacity Analysis Criteria

The capacity analysis will be completed using the criteria defined below:

Level of Service (motorized): TIS should include computation of motorized LOS for the study intersection(s) using the methods described in the HCM. The traffic analysis should be completed using approved traffic engineering software listed below. LOS should be reported for each movement (or lane group) at the intersection.
Approved Traffic Engineering Software:
- Synchro/Sim Traffic Suite, version 11 or latest edition
- Highway Capacity Software (HCS), version 2023 or latest edition
- Vissim for special conditions
- Any other traffic engineering software must be approved in advance by city staff.

City staff can request additional analysis and/or access to electronic files for specialized software for more complicated traffic studies. Example software may include, but limited to, PTV Vissim, PTV Vistro, or SIDRA software. LOS should be reported for each movement (or lane group) at the intersection.

Traffic simulation should be conducted for closely spaced intersections, or complex traffic conditions. All traffic analysis files should be submitted electronically to the City as part of the TIS submittal.

Impact thresholds for overall intersection LOS are:
- LOS D – is typically acceptable on all arterials and collectors
- LOS C – is typically acceptable on all other roadways (the highest class of road defines an intersection)

Individual turning movements should operate with LOS D or better for all intersections. For locations with LOS E or F, additional information or explanation should be provided (i.e. vehicle queue length, signal warrant and geometric or traffic control recommendations should be included in the TIS). A TIS that results in LOS F for individual intersections or movements may not preclude acceptance of the TIS and the development by the City. TIS should identify and evaluate potential geometric improvements to improve LOS. Final approval will be completed by Public Works.

Vehicle Queuing: TIS should provide 95th percentile queue length for the individual turning movements. This information is beneficial in determining appropriate turn lane lengths or issues of driveways/streets being blocked by the traffic queue from an adjacent study intersection.

13.2 Intersection Analysis

a. Unsignalized Intersections: HCM results should be reported for unsignalized capacity analysis. Analysis should include the following information:
 i. Existing and proposed lane configurations and traffic control.
 ii. Existing volume data should be included in the analysis. Factors shall include PHF, heavy vehicle (truck) percentage, and approach grades.
 iii. The results of the capacity analysis should be summarized in a figure showing the lane configurations and individual movement level of service.
 iv. Vehicle queue lengths can be reported to the nearest 5-foot intervals with the minimum queue assumed to be 25 feet for queues reported between
0.0 and 1.0 vehicles. HCM output results should be converted from number of vehicles in queue to vehicle queue length (1 vehicle = 25 feet). Vehicle queue information should be provided in the TIS to note when vehicle queues from intersections block left-turn lane(s) and/or other nearby intersection(s). Vehicle queue information should be obtained from a traffic analysis program.

v. The vehicle queue information should be noted if the queue lengths extend beyond the available turn lane storage. Vehicle queues for the Project access point(s) or side street(s) should not extend into the circulatory roadway within the development. Internal development intersections should not spill back onto the public street system.

b. **Signalized Intersections:** Capacity analysis should include the following items:

i. **Basic Inputs:** Existing traffic volume data – PHF, heavy vehicle percentage, number of lanes, lane widths, approach grades, location to nearest traffic signal, and other inputs (i.e. on-street parking, storage bay lengths, number of pedestrians, etc.)

ii. Existing signal timings, if available. If no timings are available, the analysis should be completed with a 120 second cycle length.

iii. Existing left-turn signal phasing should be documented and used in the analysis (i.e. protected left-turn, permissive left-turn, protected/permissive left-turn, etc. Topeka typically uses leading protected-permissive left turns when needed.).

iv. For signals located within a corridor, the same cycle length should be used. Half cycle lengths can only be used if approved by City staff.

v. Existing clearance intervals should be used when available. If clearance intervals are not available, a clearance interval ranging from 5 to 6 seconds should be used. Typical clearance intervals for modeling purposes are 2 seconds all-red with 4 seconds yellow. Actual clearance intervals can be calculated using ITE Signal Timing Methodologies.

vi. Signalized capacity analysis results should be summarized on figures to illustrate the number of lanes, individual movement Level of Service, 95th percentile vehicle queue length, and overall intersection Level of Service.

vii. Lane utilization factors can be adjusted to help replicate the existing conditions for lane unbalance. Adjustments such as these should be documented in the appendix. This condition typically occurs near major intersections or near interchanges.

viii. Traffic simulation results are typically the best way to document the vehicle queue behavior and interaction between multiple intersections. For a study corridor, a minimum of 10 traffic simulation runs should be completed to provide the vehicle queue information.

ix. Vehicle queue information should be provided in the TIS to note when vehicle queues from intersections block left-turn lane(s) and/or other nearby intersection(s).

x. All capacity analysis results should be analyzed using HCM methodologies and reports should be included in the TIS appendix.
c. **Roundabout**: HCS should be used to analyze any existing or proposed roundabouts. Existing and proposed site-generated traffic volume data should be included in the analysis. Factors shall include PHF, heavy vehicle (truck) percentage, approach grades, and other required inputs. Vehicle queue information should be included in the analysis results. City staff can request additional analysis using SIDRA or VISSIM software for more complicated TIS’s.

d. **Non-Standard Interchange or Intersection Concepts**: Should a non-standard interchange or intersection concept be proposed, the capacity analysis should be completed using Vissim or other approved method to adequately evaluate the traffic operation.

14.0 Safety Analysis

Safety analysis for a TIS shall include review of available crash data for the roadway segments and intersections located within the study area over a five-year period. Crash data can be requested from KDOT at the link below.

The safety analysis should provide a summary of the crash types, severity, and crash rate for the study intersections.

Intersection crash rate:

\[
R = \frac{1,000,000 \times C}{365 \times N \times V}
\]

- \(R \) = Crash rate for intersection expressed in crashes per million entering vehicles (MEV)
- \(C \) = Total number of intersection related crashes in the study period
- \(N \) = Number of years of data
- \(V \) = Traffic volumes entering the intersection daily

15.0 Site Circulation

A TIS should include a review of the on-site circulation. This would include an assessment of the proposed access points onto the existing street network. The review should evaluate driveway throat lengths, vehicle turn radii, sight distance, internal driveway distance from the internal street network and connection points to the external system.

Vehicle Circulation: Vehicle turn radii assessment may require a review of truck access. Truck access should be evaluated to document the design vehicle that can enter and exit the development without causing impacts outside the proposed street network. A TIS should document anticipated design vehicle (WB-62, Single Unit Truck, Refuse or Bus) that is expected to access the development site. Autoturn shall be used to assess the truck circulation within the site and access the public street network. The design vehicle should be approved by
City staff. The City Bus design vehicle should be used if a Topeka Metro bus is anticipated to enter the site based on the proposed route.

Pedestrian/Bicycle Circulation: In addition to the above analysis, the TIS should include a review of the pedestrian and bicycle circulation within a development. Increasingly, pedestrian connections and bicycle facilities are included as development amenities, so it is important to consider the interaction between pedestrians, bicyclists, and automobile drivers. The site design should consider all modes of transportation and should minimize conflicts between the various modes. The following resources are available to assist with the pedestrian and bicycle review:

- Topeka Complete Streets Plan: [Topeka Complete Streets Plan](#)
- Topeka Pedestrian Master Plan: [2016 pedplan Final_No Appendices.pdf](#)
- Topeka Bikeways Master Plan: [Bikeways | Planning (topeka.org)](#)

Drive-Thru Vehicle Queue: Understanding the anticipated vehicle queue concerns is essential for site circulation review. For development sites with a proposed drive-thru, vehicle queue analysis should be completed using queuing theory analysis to estimate the anticipated number of vehicles for the drive-thru facility. The queuing analysis should be completed using current service rates from similar facilities and the arrival rates for the proposed development site (ITE trip generation rate). Assurances should be provided that the site can still function with the estimated drive-thru vehicle queue.

16.0 Access Management

A TIS should include an evaluation of the proposed access points per City of Topeka Design Criteria for access spacing requirements and proposed driveway throat distances. If the site is located on or near a State Highway, KDOT Access Management practices should also be implemented. https://www.ksdot.gov/accessmanagement/
APPENDIX

A. Traffic Impact Study Outline

The Traffic Impact Study (TIS) should be prepared according to generally acceptable professional practice and should address the study elements listed below. Topeka City staff must approve all major assumptions. The TIS should provide sufficient text, maps, graphics, and tables to describe the study findings, recommendations, and appendices.

1. **Introduction and Study Scope:** This section should explain the context of the TIS and the scope of the work.

2. **Existing Conditions:** The TIS should document existing transportation conditions covering infrastructure/service inventory, existing demand/usage, safety issues, and operational performance.

3. **Development Project Description:** This section should provide the following information:
 - Proposed site location, layout, access (motorized and non-motorized), land uses, and development phasing
 - Existing site access (motorized and non-motorized), land uses (types, intensities, building arrangement), and parking
 - Information on nearby parcel access and land use, and their relationship to the proposed development project
 - Trip generation using the latest edition of the ITE Trip Generation Manual and ITE Trip Generation Handbook procedures
 - Traffic assignment and distribution should be summarized and illustrated onto figures

4. **Crash Data Review**
 - Review past full 5 years of crash data available from KDOT
 - Summarize crash types, severity and locations if study includes multiple intersections or segments
 - Develop Crash Rates
 - Identify countermeasures (if needed)

5. **Site Plan Review**
 - Site plan circulation
 - Access Management Review
 - Intersection sight distance evaluation
 - Pedestrian Circulation and Connection
 - Document existing pedestrian facilities adjacent to the site
 - Transit
● Drive Thru: Any site with a drive-thru to serve their clients shall include a vehicle queue calculation. Vehicle queue calculations shall be completed using queuing theory from actual service rates from similar facility or actual service data and estimated arrival rates.

6. **Traffic Operational Analysis Sections:** The traffic operational analysis should be summarized for each of the traffic volume scenarios. Discussion should include individual motorized Levels of Service (LOS) by movement and vehicle queueing along with the overall intersection LOS, if applicable. This section should include traffic signal warrant analysis and any turn lane recommendations.

 i. **Existing Conditions (No Development):** The TIS should present the existing background transportation conditions. The existing conditions analysis should provide a summary of the current traffic operations and current geometrics.

 ii. **Existing Conditions plus Site Generated Traffic (Full Build Only):** This section should present the opening day conditions with the proposed development project added. If the Project will cause traffic operation issues to the existing street network, mitigation measures should be identified, and their effect on the performance of the relevant mode should be identified. Acceptable levels of service are defined in Section 13.0.

 iii. **Existing Conditions plus Site Generated Traffic (Major Phases to Full Build):** A Project with trip generation levels that meet Level 4 will require additional traffic operation analysis scenarios. Depending on the number of phases, additional phased conditions may need to be developed for the TIS. Operations not meeting the acceptable levels of service will need to be mitigated.

 iv. **Future Year Background Traffic (No Build):** This analysis scenario is to provide a base scenario to compare against “Full Build Project” conditions.

 v. **Future Year Background Traffic plus Site Generated Traffic (Full Build):** This analysis scenario is to determine the ultimate impact the Project will have on the street network for the future year scenario. Operations not meeting the acceptable levels of service will need to be mitigated.

7. **Summary and Recommendations:** This section should provide a summary of the study process and geometric improvement recommendations.

8. **Appendix:** All trip generation assumptions, internal capture rates, and traffic analysis reports should be provided in an appendix with sufficient detail to recreate the process and assumptions at a later date.